An Optimal Routing Algorithm for Horizontal Moving Signals in OCN for Massively Parallel Systems with Faulty Node/Link
Sanjukta Mohanty,
Prafulla Kumar Behera
Issue:
Volume 6, Issue 2, April 2017
Pages:
35-46
Received:
9 March 2017
Accepted:
21 March 2017
Published:
7 April 2017
Abstract: An Octagon-Cell Interconnected Network (OCN) has many attractive features. To represent OCN an undirected graph G = (V, E) is used, in which V is the set of nodes in the graph and E is the set of edges in the graph. Already the optimal routing algorithm had been presented with its features in our past research work. This research paper presents the optimal routing algorithm for horizontal moving signals in OCN with a faulty node/link along the optimal path. OCN is expandable. Also the algorithm tells that, even the OCN is expanded; there is no effect to find the optimal path in presence of faulty nodes. OCN can be utilized in massively parallel computing. In a massively parallel system a large number of processors are used to perform a set of coordinated computation simultaneously. So OCN is assumed a type of integrated circuit with an array of hundreds or thousands of central processing units (CPUs) and random-access memory banks.
Abstract: An Octagon-Cell Interconnected Network (OCN) has many attractive features. To represent OCN an undirected graph G = (V, E) is used, in which V is the set of nodes in the graph and E is the set of edges in the graph. Already the optimal routing algorithm had been presented with its features in our past research work. This research paper presents the...
Show More
Design of Low Power WSN Node in Wild Environment
Issue:
Volume 6, Issue 2, April 2017
Pages:
47-53
Received:
11 April 2017
Published:
12 April 2017
Abstract: This paper proposes a wireless sensor node design method with anti-jamming and low power consumption, to achieve in the field of data collection and data processing. The overall block diagram of the node and the hardware design and software flow design are given. The field environment acquisition system is used as the application scenario. The wireless sensor network node designed by this method can effectively realize the function of the system and ensure the low power consumption and stability of the network. Experiments show that, through hardware design and software design, such nodes are deployed in wireless sensor network (wsn) particularly low power consumption, interference, stability, etc. This method can solve the problem of satisfying the deployment of WSN in the field environment for longer periods of time. It is hoped that the design of this paper will provide some reference value and significance for the later wireless sensor network deployment.
Abstract: This paper proposes a wireless sensor node design method with anti-jamming and low power consumption, to achieve in the field of data collection and data processing. The overall block diagram of the node and the hardware design and software flow design are given. The field environment acquisition system is used as the application scenario. The wire...
Show More